Results 1-43 of 43 (Search time: 0.007 seconds).
Issue Date | Title | Author(s) | Relation | scopus | WOS | Fulltext/Archive link | |
---|---|---|---|---|---|---|---|
1 | 2013 | A simple proof of Sharkovsky's theorem rerevisited, Preprint (Version 8, March 13, 2013) | Du, Bau-Sen | A simple proof of Sharkovsky's theorem rerevisited, Preprint (Version 8, March 13, 2013) | |||
2 | 2008 | A note on circulant transition matrices in Markov chains | Du, Bau-Sen ; Chou, Wun-Seng; Shiue, Peter J. -S. | LINEAR ALGEBRA AND ITS APPLICATIONS 429(7), 1699-1704 | |||
3 | 2007 | A simple proof of Sharkovsky's theorem revisited | Du, Bau-Sen | AMERICAN MATHEMATICAL MONTHLY 114(2), 152-155 | |||
4 | 2007 | An improved stability criterion with application to the Arneodo-Coullet-Tresser map | Du, Bau-Sen ; Hsiau, S. -R.; Li, M. -C.; Malkin, M. | Taiwanese Journal of Mathematics 11(5), 1369-1382 | |||
5 | 2006 | Topological horseshoes for Arneodo-Coullet-Tresser maps | Du, Bau-Sen ; Li, Ming-Chia; Malkin, Mikhail | Regular and Chaotic Dynamics 11(2), 181-190 | |||
6 | 2006 | On the nature of chaos | Du, Bau-Sen | Preprint | |||
7 | 2006 | More simple proofs of Sharkovsky's theorem | Du, Bau-Sen | Preprint | |||
8 | 2006 | On the nature of chaos, Preprint(2006). | Du, Bau-Sen | ||||
9 | 2005 | Newton, Fermat, and Exactly Realizable Sequences | Du, Bau-Sen ; Huang, Sen-Shan; Li, Ming-Chia | J. Integer Sequences(electronic) 8, Article 05.1.2 | |||
10 | 2005 | On the invariance of Li-Yorke chaos of interval maps | Du, Bau-Sen | J. Diff. Equ. Appl. 11(9), 823-828 | |||
11 | 2004 | A simple proof of Sharkovsky's theorem | Du, Bau-Sen | Amer. Math. Monthly 111(7), 595-599 | |||
12 | 2004 | On the class of square Petrie matrices induced by cyclic permutations | Du, Bau-Sen | International Journal of Mathematics and Mathematical Sciences 2004(31), 1617-1622 | |||
13 | 2003 | A refinement of Sharkovskii's theorem on orbit types characterized by two parameters | Du, Bau-Sen ; Li, Ming-Chia | J. Math. Anal. Appl. 278(1), 77-82 | |||
14 | 2003 | Generalized Fermat, double Fermat and Newton sequences | Du, Bau-Sen ; Huang, Sen-Shan; Li, Ming-Chia | J. Number Theory 98(1), 172-183 | |||
15 | 2000 | The linearisations of cyclic permutations have rational zeta functions | Du, Bau-Sen | Bulletin of the Australian Mathematical Society 62(2), 287-295 | |||
16 | 2000 | Obtaining new dividing formulas $n | Q(n)$ frow the known ones | Du, Bau-Sen | Fibonacci Quarterly 38(3), 217-222 | |||
17 | 1999 | Congruence identities arising from dynamical systems | Du, Bau-Sen | Appl. Math. Letters 12(5), 115-119 | |||
18 | 1998 | A dense orbit almost implies sensitivity to initial conditions | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 26(2), 85-94 | |||
19 | 1997 | Point bifurcations and bubbles for some one-parameter families of quadratic polynomials | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 25(1), 1-9 | |||
20 | 1993 | Point bifurcations for some one-parameter families of interval maps | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 21(3), 187-202 | |||
21 | 1991 | On direct bifurcations into chaos and order for a simple family of interval maps | Du, Bau-Sen | Bull. Austral. Math. Soc. 44(3), 367-373 | |||
22 | 1991 | On the bifurcation of periodic orbits of some generalized Henon mappings | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 19(3), 207-217 | |||
23 | 1991 | Smooth weakly chaotic interval maps with zero topological entropy | Du, Bau-Sen | Dynamical Systems And Related Topics - Proceedings Of The International Conference(Advanced Series in Dynamical Systems, World Scientific, Singapore), 72-79 | |||
24 | 1989 | Every chaotic interval map has a scrambled set in the recurrent set | Du, Bau-Sen | Bulletin of the Australian Mathematical Society 39(2), 259-264 | |||
25 | 1989 | A simple method which generates infinitely many congruence identities | Du, Bau-Sen | Fibonacci Quarterly 27, 116-124 | |||
26 | 1988 | Unimodal expanding maps of the interval | Du, Bau-Sen | Bull. Austral. Math. Soc. 38, 125-130 | |||
27 | 1988 | Symmetric periodic orbits of continuous odd functions on the interval | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 16(1), 1-48 | |||
28 | 1987 | Minimal periodic orbits and topological entropy of interval maps | Du, Bau-Sen | Proc. Amer. Math. Soc. 100(3), 482-484 | |||
29 | 1987 | Dense orbits and dense periodicity on the interval | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 15(1), 35-48 | |||
30 | 1987 | Topological entropy and chaos of interval maps | Du, Bau-Sen | Nonlinear Analysis: Theory, Methods & Applications 11(1), 105-114 | |||
31 | 1987 | Examples of expanding maps with some special properties | Du, Bau-Sen | Bull. Austral. Math. Soc. 36, 469-474 | |||
32 | 1986 | An example of a bifurcation from fixed points to period 3 points | Du, Bau-Sen | Nonlinear Analysis: Theory, Methods & Applications 10(7), 639-641 | |||
33 | 1986 | A note on periodic points of expanding maps of the interval | Du, Bau-Sen | Bull. Austral. Math. Soc. 33(3), 435-447 | |||
34 | 1985 | The minimal number of periodic orbits of periods guaranteed in Sharkovskii's theorem | Du, Bau-Sen | Bulletin of the Australian Mathematical Society 31(1), 89-103 (Corrigendum: 32(1985), 159) | |||
35 | 1985 | Bifurcation of periodic points of some diffeomorphisms on $R^3$ | Du, Bau-Sen | Nonlinear Analysis: Theory, Methods & Applications 9(4), 309-319 | |||
36 | 1984 | Almost all points are eventually periodic with minimal period 3 | Du, Bau-Sen | Bull. Inst. Math. Acad. Sinica 12(4), 405-411 | |||
37 | 1984 | A chaotic function whose non-wandering set is the Cantor ternary set | Du, Bau-Sen | Proc. Amer. Math. Soc. 92(2), 277-278 | |||
38 | 1983 | Are chaotic functions really chaotic | Du, Bau-Sen | Bull. Austral. Math. Soc. 28(1), 53-66 | |||
39 | 1982 | Period 3 bifurcation for the logistic mapping | Du, Bau-Sen | IMA Preprint Series 7, University of Minnesota | |||
40 | 1982 | Period 3 bifurcation for the logistic mapping, IMA Preprint Series #7, University of Minnesota, 1982. | Du, Bau-Sen | ||||
41 | 1981 | A note on periodic solutions in the vicinity of a center | Du, Bau-Sen | Proc. Amer. Math. Soc. 81(4), 579-584 | |||
42 | - | The lives of period-3 orbits for some quadratic polynomials | Du, Bau-Sen | (pedagogical note) | |||
43 | - | The lives of period-3 orbits for some quadratic polynomials (pedagogical note). | Du, Bau-Sen |